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ABSTRACT

The chirality of an “achiral” benzophenone-based complex can be controlled. The benzophenone-based complex thus controlled affords high
enantioselectivity in the catalytic asymmetric ketone hydrogenation (up to 99% ee, >99% yield).

The development of asymmetric catalysts for organic reac-
tions is one of the most challenging subjects in modern sci-
ence and technology.1 Generally, asymmetric catalysis em-
ploys metal complexes bearing chiral and atropisomeric2

(originating fromatropos in Greek3) ligands, normally in
enantiopure forms.

Inherently, achiral or racemic ligands provide only racemic
products. However, asymmetric catalysis might be developed
via enantiomeric fluctuation or discrimination of conforma-
tional chirality of achiral ligands.4 Indeed, the racemic
BIPHOS ligand was recently reported to spontaneously
crystallize and the conglomerate was then used as a chiral

ligand.5 In a fluid phase, however, enantiomeric resolution
or control to single conformational chirality is rather difficult
due to thermal fluctuations and/or molecular diffusion.6

We report here enantiocontrol of achiral benzophenone
ligands7,8 in the solution phase and the use of the metal
complexes for highly enantioselective catalysis9 of ketone
hydrogenation10 (up to 99% ee, 99% yield) (Scheme 1).
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The asymmetric catalysts are generally metal complexes
bearing chiral and atropisomeric ligands such as BINAP,
which usually allow theC2-symmetric metal complexes for
enantiocontrol.11

Achiral andtropos2,2′-bis(diphenylphosphino)benzophe-
none (DPBP) might possess conformational chirality such
as BINAP. Upon addition of DPBP to [RuCl2(C6H6)]2, RuCl2-
(dpbp)(dmf)n complex1 was obtained.

The chiral control of RuCl2(dpbp)(dmf)n complex1 by
(1S,2S)-(-)-1,2-diphenylethylenediamine ((S,S)-DPEN) led
to the formation of enantiomerically pure RuCl2(dpbp)[(S,S)-
dpen] complex2 as shown in the solution NMR (Scheme
2). The single crystal of RuCl2(dpbp)[(S,S)-dpen] (2) was

not obtained. Fortunately, however, the single crystal of the
monotriflate derivative, [RuCl(OTf)(dpbp){(S,S)-dpen}]2AgOTf
(3), was obtained (Figure 1).

The X-ray analysis of [RuCl(OTf)(dpbp){(S,S)-dpen}]2-
AgOTf (3)12 showed the enantiopure structure of this
benzophenone-derived diphosphine-metal complex3. The

top view of Figure 1 shows that the benzophenone skeleton
of the DPBP ligand adopts a chiral propeller conformation.

The advantage of the “achiral” andtroposbenzophenone
ligand over the enantiopureatroposBINAP counterpart for
asymmetric catalysis can be seen in hydrogenation of 1′-
acetonaphthone (Table 1). A virtually complete (99% ee,

>99% yield) enantioselectivity was attained by the ben-
zophenone catalyst2. The enantioselectivity thus obtained
is higher than 97% ee obtained by our own hand13 with the
enantiopure BINAP counterpart (Table 1, entry 1 vs entry
3). There was a possibility that hydrogenated DPBP, namely
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Figure 1. X-ray structure of [RuCl(OTf)(dpbp){(S,S)-dpen}]2AgOTf (3).

Scheme 2

Table 1. Asymmetric Hydrogenation of 1′-Acetonaphthone

alcohol product

entry diphosphine conv (%) ee (%)

1 DPBP >99 99
2 DPBOL 67 66
3a (S)-BINAP >99 97

a Also see ref 10a.
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2,2′-bis(diphenylphosphino)benzhydrol (DPBOL), might be
involved in the present hydrogenation of 1′-acetonaphthone.
However, the hydrogenation with DPBOL was confirmed to be
much lower in enantioselectivity than that obtained with DPBP.

The hydrogenation by achiral DPBP is also effective even
in the case of ortho-, meta-, or para-substituted acetophe-
nones. DPBP catalyst2 gave ortho-, meta-, or para-
substituted phenethyl alcohols with higher enantioselective
(up to 98% ee) than that obtained with BINAP-Ru or tol-
BINAP-Ru catalysts (Table 2).

In summary, we have uncovered that the chirality of

benzophenone complexes can be controlled even in the
solution phase. The enantiopure benzophenone complex thus
obtained affords even higher enantioselectivity than those
attained by the enantiopure BINAP counterpart in the
asymmetric catalysis of ketone hydrogenation.
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(12) Crystal data for [RuCl(OTf)(dpbp){(S,S)-dpen}]2AgOTf (3): for-
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Table 2. Asymmetric Hydrogenation with DPBP-Ru
Complexes

a Also see:ref 10a.b Also see ref 10e.
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